
Configure virtual hosts on Ubuntu 18.04 server with

Apache

Apache VirtualHost is used to run multiple website in the same Apache server. It’s an

awesome feature of Apache 2 web server for high density deployment of websites in a single

server. Apache has two types of VirtualHost configuration, IP based VirtualHost and name

based VirtualHost.IP Based VirtualHost: In IP based VirtualHost, an Apache server has

multiple IP addresses and it responds with different websites based on the IP address.

Fig 1: Apache IP based VirtualHost.

Name Based VirtualHost: In name based VirtualHost, an Apache server has a single IP

address and multiple domain names configured for each website. In a DNS server, each of

these domain names are assigned the IP address of the Apache server. Depending on what

domain name the client used, the server returns different websites.

Fig 2: Apache name based VirtualHost.

In this article, I am going to show you how to configure the Apache name based VirtualHost.

I will be using Ubuntu 18.04 LTS for the demonstration. But it should work on any modern

Linux distribution with little to no change. So, let’s get started.

Installing Apache 2 Web Server:

Apache 2 web server is available in the official package repository of Ubuntu 18.04 LTS. So,

you can easily install it with the APT package manager.

First, update the APT package repository cache with the following command:

$ sudo apt update

Now, run the following command to install Apache 2 web server:

$ sudo apt install apache2

Now, press y and then press <Enter> to continue.

Apache 2 web server should be installed.

Configuring DNS:

Now, you have to configure the DNS server to map the domain names that you want to use

for VirtualHost to the IP address of your Apache server.

You can find the IP address of your Apache server with the following command:

$ ip a | egrep "inet "

As you can see, the IP address in my case is 192.168.21.166. It will be different for you. So,

make sure to replace it with yours from now on.

If you want to learn how to configure Apache VirtualHost locally, then you can use the

/etc/hosts file for local DNS/name resolution.

To configure local DNS resolution, open the /etc/hosts file with nano as follows:

$ sudo nano /etc/hosts

Now, add the line as marked in the screenshot below to the file. Then press <Ctrl> + x

followed by y and <Enter> to save the file.

Now, local name resolution should work.

Directory Structures:

I want to keep all the website data of my Apache VirtualHost in a specific directory /www.

Here, I want to create a directory for each user. Each user will have his/her own public_html/

and logs/ directory as well.

For example, for 3 users bob (example1.com), alice (example2.com), linda

(example3.com), the directory structure is as follows:

/www

- example1.com/

- www/

- public_html/

- index.html

- logs/

- example2.com/

- www/

- public_html/

- index.html

- logs/

- example3.com/

- www/

- public_html/

- index.html

- logs/

An easy way to do that is to create a template or skeleton directory and put the directory

structure there. Then create each users using this skeleton directory.

First, copy the contents of the default skeleton directory /etc/skel to another directory

/etc/skel-www as follows:

$ sudo cp -rv /etc/skel /etc/skel-www

Now, navigate to the new skeleton directory as follows:

$ cd /etc/skel-www

Then create the desired directory structure inside the skeleton directory as follows:

$ sudo mkdir -p www/{public_html,logs}

You can also create a default index.html file in the public_html/ directory if you want.

$ echo "<h3>It works</h3>" | sudo tee www/public_html/index.html

Now, create the /www directory with the following command:

$ sudo mkdir /www

Creating Users:

Now, you can create the user bob for www.example1.com as follows:

$ sudo useradd --create-home --home-dir /www/example1.com --shell

/bin/bash --gid www-data --skel /etc/skel-www bob

The same way, create the user alice for www.example2.com as follows:

$ sudo useradd --create-home --home-dir /www/example2.com --shell /bin/bash

--gid www-data --skel /etc/skel-www alice

Again, create the user linda for www.example3.com as follows:

$ sudo useradd --create-home --home-dir /www/example3.com --shell /bin/bash

--gid www-data --skel /etc/skel-www linda

Here, I assigned the primary group of each user to www-data. By default, Apache server

runs as this group. If I hadn’t done that, Apache server won’t be able to access the files in the

public_html/ directory and create log files in the logs/ directory.

Configuring Apache VirtualHost:

Now, you are ready to configure Apache VirtualHost for 3 users bob

(www.example1.com), alice (www.example2.com) and linda (www.example3.com).

The default Apache site configuration directory on Ubuntu is /etc/apache2/sites-available.

Now, navigate to the directory /etc/apache2/sites-available/ as follows.

$ cd /etc/apache2/sites-available/

First, create a new configuration file for bob www.example1.com.conf as follows:

$ sudo nano www.example1.com.conf

http://www.example1.com/
http://www.example2.com/
http://www.example3.com/

A text editor should be opened.

Now, type in the following lines.

ServerName example1.com

ServerAlias www.example1.com

DocumentRoot "/www/example1.com/www/public_html"

<Directory "/www/example1.com/www/public_html">

Options -FollowSymLinks +MultiViews +Indexes

AllowOverride all

Require all granted

ErrorLog "/www/example1.com/www/logs/error.log"

CustomLog "/www/example1.com/www/logs/access.log" combined

NOTE: Change the bold texts according to your requirement.

Finally, the configuration file www.example.com.conf should looks as follows. Press

<Ctrl> + x followed by y and <Enter> to save the configuration file.

to just copy the configuration file for bob (www.example1.com.conf) and make what little

changes are required.

Copy the configuration file of bob for alice and linda with the following commands:

$ sudo cp -v www.example1.com.conf www.example2.com.conf

$ sudo cp -v www.example1.com.conf www.example3.com.conf

Now, edit the configuration file of alice as follows:

$ sudo nano www.example2.com.conf

Now, change all occurrences of example1 to example2. Then save the file.

Do the same thing for linda.

$ sudo nano www.example3.com.conf

Change all occurrences of example1 to example3 and save the file.

Enabling VirtualHost Configurations:

Now, disable the Apache default website configuration as follows:

$ sudo a2dissite 000-default.conf

Now, enable the VirtualHost configurations www.example1.com.conf,

www.example2.com.conf, www.example3.com.conf as follows:

$ sudo a2ensite www.example1.com.conf www.example2.com.conf

www.example3.com.conf

Finally, restart the Apache service as follows:

$ sudo systemctl restart apache2

Testing VirtualHosts:

Now, try to access the websites www.example1.com, www.example2.com,

www.example3.com

As you can see, all of these websites works as expected.

NOTE: I changed the default page index.html for each sites so that it’s a little bit different

for each website for testing purpose. Otherwise, you won’t be able to tell whether VirtualHost

configuration works or not.

http://www.example1.com/
http://www.example2.com/
http://www.example3.com/

So, that’s how you configure name based Apache VirtualHost on Ubuntu 18.04 LTS.

Thanks for reading this article.

